Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Microbiol ; 290: 109969, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211362

RESUMO

Emerging evidence confirms beneficial properties of probiotics in promoting growth and immunity of farmed chicken. However, the molecular mechanisms underlying the host-microbiome interactions mediated by probiotics are not fully understood. In this study, the internal mechanisms of Lacticaseibacillus chiayiensis-mediated host-microbiome interactions and to elucidate how it promotes host growth were investigated by additional supplementation with L. chiayiensis. We conducted experiments, including intestinal cytokines, digestive enzymes test, intestinal microbiome, metabolome and transcriptome analysis. The results showed that chickens fed L. chiayiensis exhibited higher body weight gain and digestive enzyme activity, and lower pro-inflammatory cytokines, compared to controls. Microbiota sequencing analysis showed that the gut microbiota structure was reshaped with L. chiayiensis supplementation. Specifically, Lactobacillus and Escherichia increased in abundance and Enterococcus, Lactococcus, Corynebacterium, Weissella and Gallicola decreased. In addition, the bacterial community diversity was significantly increased compared to controls. Metabolomic and transcriptomic analyses revealed that higher bile acids and N-acyl amides concentrations and lower carbohydrates concentrations in L. chiayiensis-fed chickens. Meanwhile, the expression of genes related to nutrient transport and absorption in the intestine was upregulated, which reflected the enhanced digestion and absorption of nutrients in chickens supplemented with L. chiayiensis. Moreover, supplementation of L. chiayiensis down-regulated genes involved in inflammation-related, mainly involved in NF-κB signaling pathway and MHC-II mediated antigen presentation process. Cumulatively, these findings highlight that host-microbiota crosstalk enhances the host growth phenotype in two ways: by enhancing bile acid metabolism and digestive enzyme activity, and reducing the occurrence of intestinal inflammation to promote nutrient absorption and maintain intestinal health. This provides a basis for the application of LAB as an alternative to antibiotics in animal husbandry.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Microbioma Gastrointestinal/genética , Galinhas , Lactobacillus , Inflamação/veterinária , Citocinas , Lacticaseibacillus
2.
J Dairy Sci ; 107(3): 1355-1369, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37776999

RESUMO

It is desirable to obtain high levels of viable Lacticaseibacillus paracasei, a widely used food probiotic whose antibacterial activity and potential application in milk remain largely uninvestigated. Here, we isolated and purified the L. paracasei strain XLK 401 from food-grade blueberry ferments and found that it exhibited strong antibacterial activity against both gram-positive and gram-negative foodborne pathogens, including Staphylococcus aureus, Salmonella paratyphi B, Escherichia coli O157, and Shigella flexneri. Then, we applied alternating tangential flow (ATF) technology to produce viable L. paracasei XLK 401 cells and its cell-free supernatant (CFS). Compared with the conventional fed-batch method, 22 h of ATF-based processing markedly increased the number of viable cells of L. paracasei XLK 401 to 12.14 ± 0.13 log cfu/mL. Additionally, the CFS exhibited good thermal stability and pH tolerance, inhibiting biofilm formation in the abovementioned foodborne pathogens. According to liquid chromatography-mass spectrometry analysis, organic acids were the main antibacterial components of XLK 401 CFS, accounting for its inhibition activity. Moreover, the CFS of L. paracasei XLK 401 effectively inhibited the growth of multidrug-resistant gram-positive Staph. aureus and gram-negative E. coli O157 pathogens in milk, and caused a reduction in the pathogenic cell counts by 6 to 7 log cfu/mL compared with untreated control, thus considerably maintaining the safety of milk samples. For the first time to our knowledge, ATF-based technology was employed to obtain viable L. paracasei on a large scale, and its CFS could serve as a broad-spectrum biopreservative for potential application against foodborne pathogens in milk products.


Assuntos
Escherichia coli O157 , Lacticaseibacillus paracasei , Animais , Leite , Antibacterianos/farmacologia , Contagem de Células/veterinária
3.
Antibiotics (Basel) ; 12(9)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37760653

RESUMO

The growing issue of antibiotic resistance has restrained the utilization of antibiotics as growth enhancers in the poultry industry. Probiotics are candidates for replacing antibiotics in the poultry industry. However, probiotics are strain-specific and their efficacy needs to be investigated before applying them. The aim of this study was to assess the positive effects of Lacticaseibacillus chiayiensis AACE3 on the health and gut microbiota of Nandan Yao chicks. The results showed that compared with the blank control (NC) and aureomycin (PC) groups, L. chiayiensis AACE3 increased final body weight (BW), villus height and improved the ratio of villus height to crypt depth in chicken jejunal tissues. L. chiayiensis AACE3 also increased the activity of hepatic antioxidant enzymes (SOD, CAT and T-AOC) and reduced hepatic oxidative damage (MDA). Furthermore, compared to NC, L. chiayiensis AACE3, the activity of intestinal digestive enzymes (i.e., α-amylase, lipase and trypsin) was increased. L. chiayiensis AACE3 upregulated the production of IgA and IgG and downregulated the production of IL-6, IL-1ß and TNF-α in chicken serum. Moreover, supplementation of L. chiayiensis AACE3 enhances the diversity of gut microbes. At the phylum level, the abundance of Actinobacteriota and Proteobacteria decreased with L. chiayiensis AACE3 supplementation, while the abundance of Verrucomicrobiota and Bacteroidetes increased. At the genus level, there was an increase in the abundance of potential probiotics Akkermansia, Romboutsia, Subdoligranulum, and Lactobacillus. This study confirms that L. chiayiensis AACE3 is an excellent feed additive as an alternative to aureomycin and offers various advantages for the healthy growth of chickens during the brooding period by positively affecting their gut microbiome.

4.
Microorganisms ; 11(9)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37763985

RESUMO

Lacticaseibacillus paracasei, serves as a growth promoter used in the poultry industry, contributeing to broiler development. However, practical studies are needed to determine the probiotic potential and growth-promoting effects of specific L. paracasei strains. This study aims to determine whether L. paracasei XLK401 influences broiler chicken growth and the mechanisms involved. Notably, we identified several bile salt and acid tolerance-related genes (Asp23, atpD, atpA, atpH, and atpF) in L. paracasei XLK401. This bacterium demonstrates robust probiotic properties under acidic conditions (pH 2.0) and 0.3% bile salt conditions. It also contains a variety of antioxidant-related genes (trxA, trxB, and tpx), carbohydrate-related genes, gene-encoding glycosidases (e.g., GH and GT), and three clusters of genes associated with antimicrobial compounds. Supplementation with L. paracasei XLK401 significantly increased the body weight of the chicks. In addition, it significantly increased hepatic antioxidant enzyme activities (GSH-Px, SOD, and T-AOC) while significantly decreasing the levels of oxidative damage factors and inflammatory factors (MDA and IL-6), resulting in improved chick health. Improvements in body weight and health status were associated with significant increases in α-amylase activity and the remodeling of the host gut microbiota by L. paracasei XLK401. Among them, actinobacteria abundance in chicken intestines after feeding them L. paracasei XLK401 was significantly decreased, Bifidobacterium sp. abundance was also significantly decreased, and Subdoligranulum sp. abundance was significantly increased. This suggests that L. paracasei XLK401 can regulate the abundance of certain bacteria without changing the overall microbial structure. In addition, in the correlation analysis, Subdoligranulums sp. were positively correlated with SOD and negatively correlated with IL-1ß and MDA. Overall, our study demonstrates that L. paracasei XLK401 effectively promotes healthy chick growth. This is made possible by the modulation of gut microbe abundance and the underlying probiotic effect of L. paracasei XLK401. Based on these findings, we postulate L. paracasei XLK401 as a potential efficient growth promoter in broiler farming.

5.
Front Microbiol ; 14: 1168378, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275148

RESUMO

Numerous different species of LAB are used in different fields due to their unique characteristics. However, Lacticaseibacillus chiayiensis, a newly established species in 2018, has limited microorganism resources, and lacks comprehensive evaluations of its properties. In this study, L. chiayiensis AACE3, isolated from fermented blueberry, was evaluated by genomic analysis and in vitro assays of the properties. The genome identified genes associated with biofilm formation (luxS, ccpA, brpA), resistance to oxidative stress (tpx, trxA, trxB, hslO), tolerance to acidic conditions (dltA, dltC), resistance to unfavorable osmotic pressure (opuBB, gbuA, gbuB, gbuC), and adhesion (luxS, dltA, dltC). The AACE3 showed 112 unique genes, relative to the other three L. chiayiensis strains. Among them, the presence of genes such as clpP, pepO, and feoA suggests a possible advantage of AACE3 over other L. chiayiensis in terms of environmental adaptation. In vitro evaluation of the properties revealed that AACE3 had robust antibacterial activity against eight common pathogens: Streptococcus agalactiae, Staphylococcus aureus, Escherichia coli, Salmonella enteritidis, Salmonella choleraesuis, Shigella flexneri, Pseudomonas aeruginosa, and Klebsiella pneumoniae. In addition, AACE3 showed more than 80% survival rate in all tests simulating gastrointestinal fluid, and it exhibited high antioxidant capacity. Interestingly, the cell culture supernatant was superior to intact organisms and ultrasonically crushed bacterial extracts in all tests of antioxidant capacity. These results suggested that the antioxidant capacity may originate from certain metabolites and extracellular enzymes produced by AACE3. Moreover, AACE3 was a moderate biofilm producer due to the self-agglomeration effect. Taken together, L. chiayiensis AACE3 appears to be a candidate strain for combating the growing incidence of pathogen infections and antioxidant production.

6.
J Hazard Mater ; 458: 131594, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37330373

RESUMO

The mechanisms underlying the toxicity of environmental stress are unclear for marine macrobenthos. Copper/Cu has posed the most serious threats to amphioxus, an ancient and model benthic cephalochordate. Herein, a dynamic change in the physiological parameters (GR, SOD, ATP, and MDA) was detected with ROS accumulation in Branchiostoma belcheri exposed to 0.3 mg·L-1 Cu. Transcriptomes and microRNAomes of B. belcheri were generated to investigate the molecular mechanisms by which this amphioxus copes with Cu exposure. Time-specific genes identified at different time points after exposure were involved in the stimulus and immune response, detoxification and ionic homeostasis, aging and the nervous system, sequentially, with prolongation of exposure time, forming a dynamic process of molecular response to Cu stress. In total, 57 differentially expressed miRNAs were identified under Cu stress. Transcriptomics-miRNAomics analyses indicate that these miRNAs targeted genes associated with many key biological processes such as xenobiotics degradation, oxidative stress, and energy metabolism. The constructed miRNA-mRNA-pathway network uncovered a broad post-transcriptional regulatory mechanism in B. belcheri to cope with Cu stress. Overall, this integrated analyses show that enhanced defense response, accelerated ROS elimination, and repressed ATP production constitute a comprehensive strategy to cope with Cu toxicity in the ancient macrobenthos.


Assuntos
Anfioxos , MicroRNAs , Animais , Transcriptoma , Cobre/toxicidade , Cobre/metabolismo , Espécies Reativas de Oxigênio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Trifosfato de Adenosina/metabolismo
7.
Curr Res Food Sci ; 6: 100484, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033741

RESUMO

Foodborne pathogens and their biofilms pose a risk to human health through food chain. However, the bacteriocin resources combating this threat are still limited. Here, Lacticaseibacillus rhamnosus, one of the most used probiotics in food industry, was prepared on a large scale using alternating tangential flow (ATF) perfusion-based technology. Compared to the conventional fed-batch approach, ATF perfusion remarkably increased the viable cells of L. rhamnosus CLK 101 to 11.93 ± 0.14 log CFU/mL. Based on obtained viable cells, we purified and characterized a novel bacteriocin CLK_01 with a broad spectrum of activity against both Gram-positive and Gram-negative foodborne pathogens. LC-MS/MS analysis revealed that CLK_01 has a molecular mass of 701.49 Da and a hydrophobic amino acid composition of I-K-K-V-T-I. As a novel bacteriocin, CLK_01 showed high thermal stability and acid-base tolerance over 25-121 °C and pH 2-10. It significantly reduced cell viability of bacterial pathogens (p < 0.001), and strongly inhibited their biofilm formation. Scanning electron microscopy demonstrated deformation of pathogenic cells caused by CLK_01, leading to cytoplasmic content leakage and bacterial death. Summarily, we employed ATF perfusion to obtain viable L. rhamnosus, and presented that bacteriocin CLK_01 could serve as a promising biopreservative for controlling foodborne pathogenic bacteria and their biofilms.

8.
Front Microbiol ; 14: 1120263, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007532

RESUMO

Lactic acid bacteria are generally regarded as alternatives to antibiotics in livestock and poultry farming, especially Lactobacillus strains, which are safe and have probiotic potential. Although Lactobacillus salivarius has long been proposed to be a probiotic, the understanding of the roles of this species is still in its infancy. Here, a strain of L. salivarius CGMCC20700 isolated from the intestinal mucosa of Yunnan black-bone chicken broilers was investigated in the context of its safety and probiotic characteristics by whole-genome sequencing in parallel with phenotypic analysis. Whole-genome sequencing results showed that L. salivarius CGMCC20700 has a single scaffold of 1,737,577 bp with an average guanine-to-cytosine (GC) ratio of 33.51% and 1,757 protein-coding genes. The annotation of Clusters of Orthologous Groups (COG) classified the predicted proteins from the assembled genome as possessing cellular, metabolic, and information-related functions. Sequences related to risk assessment, such as antibiotic resistance and virulence genes, were identified, and the strain was further confirmed as safe according to the results of antibiotic resistance, hemolytic, and acute oral toxicology tests. Two gene clusters of antibacterial compounds and broad-spectrum antimicrobial activity were identified using genome mining tools and antibacterial spectrum tests. Stress resistance genes, active stressor removal genes, and adhesion related genes that were identified and examined with various phenotypic assays (such as stress tolerance tests in acids and bile salts and auto aggregation and hydrophobicity assays). The strain showed a high survival rate in the presence of bile salts and under acidic conditions and exhibited significant auto aggregation capacity and hydrophobicity. Overall, L. salivarius CGMCC20700 demonstrated excellent safety and probiotic potential at both the genomic and physiological levels and can be considered an appropriate candidate probiotic for livestock and poultry farming.

9.
Meat Sci ; 196: 109045, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36434981

RESUMO

Antibacterial activity and mechanism of action of bacteriocins against bacteria that cause pork contamination remain unclear. Here, antibacterial activity of bacteriocin LFX01 against two important indicator strains (i.e., Staphylococcus aureus and Escherichia coli) and its mechanism of action were investigated. The results showed antibacterial activity of LFX01 against growth and biofilm formation of S. aureus_26 (strain 2612:1606BL1486) and E. coli_02 (strain CMCC(B)44102). Additionally, the results demonstrated that LFX01 could decrease cell metabolic activity, disrupt cell membrane permeability and integrity, and trigger leakage of intracellular contents (e.g., K+, ATP, and lactic dehydrogenase). Furthermore, gel retardation showed that LFX01 could bind to the genomic DNA of indicator strains, disrupting DNA structure. These results uncovered mechanism of action of LFX01 against indicator strains from physiological and phenotypic levels. When applied to the surface of fresh pork models, the antibacterial activity of LFX01 against indicator strains was further confirmed. These findings suggested that LFX01 could be a potential pork preservative for controlling foodborne pathogens.


Assuntos
Bacteriocinas , Carne de Porco , Carne Vermelha , Suínos , Animais , Staphylococcus aureus , Escherichia coli , Bacteriocinas/farmacologia , Antibacterianos/farmacologia
10.
Front Plant Sci ; 14: 1309038, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264031

RESUMO

Gastrodia elata Blume, a fully mycoheterotrophic perennial plant of the family Orchidaceae, is a traditional Chinese herb with medicinal and edible value. Interestingly, G. elata requires symbiotic relationships with Mycena and Armillaria strains for seed germination and plant growth, respectively. However, there is no comprehensive summary of the symbiotic mechanism between fungi and G. elata. Here, the colonization and digestion of hyphae, the bidirectional exchange of nutrients, the adaptation of fungi and G. elata to symbiosis, and the role of microorganisms and secondary metabolites in the symbiotic relationship between fungi and G. elata are summarized. We comprehensively and deeply analyzed the mechanism of symbiosis between G. elata and fungi from three perspectives: morphology, nutrition, and molecules. The aim of this review was to enrich the understanding of the mutualistic symbiosis mechanisms between plants and fungi and lay a theoretical foundation for the ecological cultivation of G. elata.

11.
Front Microbiol ; 13: 1014970, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386721

RESUMO

As a fish unique to Yunnan Province in China, Sinocyclocheilus grahami hosts abundant potential probiotic resources in its intestinal tract. However, the genomic characteristics of the probiotic potential bacteria in its intestine and their effects on S. grahami have not yet been established. In this study, we investigated the functional genomics and host response of a strain, Lactobacillus salivarius S01, isolated from the intestine of S. grahami (bred in captivity). The results revealed that the total length of the genome was 1,737,623 bp (GC content, 33.09%), comprised of 1895 genes, including 22 rRNA operons and 78 transfer RNA genes. Three clusters of antibacterial substances related genes were identified using antiSMASH and BAGEL4 database predictions. In addition, manual examination confirmed the presence of functional genes related to stress resistance, adhesion, immunity, and other genes responsible for probiotic potential in the genome of L. salivarius S01. Subsequently, the probiotic effect of L. salivarius S01 was investigated in vivo by feeding S. grahami a diet with bacterial supplementation. The results showed that potential probiotic supplementation increased the activity of antioxidant enzymes (SOD, CAT, and POD) in the hepar and reduced oxidative damage (MDA). Furthermore, the gut microbial community and diversity of S. grahami from different treatment groups were compared using high-throughput sequencing. The diversity index of the gut microbial community in the group supplemented with potential probiotics was higher than that in the control group, indicating that supplementation with potential probiotics increased gut microbial diversity. At the phylum level, the abundance of Proteobacteria decreased with potential probiotic supplementation, while the abundance of Firmicutes, Actinobacteriota, and Bacteroidota increased. At the genus level, there was a decrease in the abundance of the pathogenic bacterium Aeromonas and an increase in the abundance of the potential probiotic bacterium Bifidobacterium. The results of this study suggest that L. salivarius S01 is a promising potential probiotic candidate that provides multiple benefits for the microbiome of S. grahami.

12.
Front Microbiol ; 13: 821989, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237249

RESUMO

Developing new strategies to replace or supplement antibiotics to combat bacterial infection is a pressing task in the field of microbiological research. In this study, we report a lytic enzyme named P9ly deriving from the bacteriophage PSD9 that could infect multidrug-resistant Shigella. This enzyme was identified through whole-genome sequencing of PSD9. The results show that P9ly contains a conserved T4-like_lys domain and belongs to the phage lysozyme family. Recombinant P9ly obtained from protein purification presented biological activity and could digest bacterial cell walls (CW), resulting in the destruction of cell structure and leakage of intracellular components. Furthermore, P9ly exhibited bacteriolytic and bactericidal activity on different strains, especially multidrug-resistant Gram-negative Shigella dysenteriae and Gram-positive Staphylococcus aureus. Additionally, combined use of P9ly with ceftriaxone sodium (CRO) could decrease necessary dose of the antibiotic used and improve the antibacterial effect. In summary, under the current backdrop of extensive antibiotic usage and the continuous emergence of bacterial resistance, this study provides an insight into developing bacteriophage-based antibacterial agents against both Gram-negative and Gram-positive pathogens.

13.
J Dairy Sci ; 105(3): 2094-2107, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35180941

RESUMO

Staphylococcus aureus and its biofilm have emerged as a significant threat to the safety of dairy products. In recent years, lactic acid bacteria (LAB) bacteriocins have been widely acknowledged as the potential natural antibacterial substance in food biopreservation due to their excellent antibacterial effects. However, few LAB bacteriocins with antibacterial and antibiofilm activity against S. aureus have been reported in dairy products. In the present study, a novel bacteriocin LSX01 of Lactobacillus paracasei LS-6 isolated from a traditional fermented yogurt produced in Yunnan, China, was purified and characterized extensively. The LSX01 possessed a molecular weight of 967.49 Da and an AA sequence of LDQAGISYT. The minimum inhibitory concentration of LSX01 against S. aureus_45 was 16.90 µg/mL, which was close to or lower than the previously reported bacteriocins. The LSX01 exhibited an extensive antimicrobial spectrum against both gram-positive and gram-negative bacteria. Moreover, LSX01 exhibited excellent tolerance to heat and acid-base treatments, and sensitivity to the proteolytic enzymes, such as pepsin and proteinase K. Furthermore, the treatment of S. aureus_45 planktonic cells with LSX01 significantly reduced their metabolic activity and disrupted the cell membrane integrity. Scan electron microscopy results demonstrated that LSX01 induced cytoplasmic content leakage and cell deformation. Additionally, biofilm formation of S. aureus_45 was also significantly inhibited by LSX01. Overall, the results suggested that the novel LAB bacteriocin LSX01 possessed antibacterial activity and antibiofilm activity against S. aureus and, hence, could have potential for improving safety of dairy products.


Assuntos
Bacteriocinas , Lacticaseibacillus paracasei , Animais , Antibacterianos/metabolismo , Bacteriocinas/farmacologia , Biofilmes , China , Bactérias Gram-Negativas , Lactobacillus/metabolismo , Lacticaseibacillus paracasei/metabolismo , Staphylococcus aureus , Iogurte
14.
Int J Biol Macromol ; 196: 13-22, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-34838856

RESUMO

Multidrug-resistant (MDR) Staphylococcus aureus biofilms have emerged as a serious threat to human health. Recently, the development of antibiotic replacement therapy has gained much attention due to the potential application of bacteriocin. The present study sought to evaluate the antibacterial effect of bacteriocin XJS01 against MDR S. aureus, a previously reported bacteriocin against S. aureus strain 2612:1606BL1486 (S. aureus_26, an MDR strain demonstrated here), and its potential application as an antibiofilm agent. The minimum bactericide concentration of XJS01 against MDR S. aureus_26 was 33.18 µg/mL. XJS01 exhibited excellent storage stability and resistance against acid and reduced the density of established MDR S. aureus_26 biofilm. The hemolytic and HEK293T cytotoxicity activities of XJS01 and the histological analyses in mice confirmed its safety. Moreover, XJS01 effectively disrupted the MDR S. aureus_26 biofilm established on the skin wound surface and reduced the biofilm-isolated bacteria, thereby decreasing the release of pro-inflammatory cytokines and the proliferation of alternatively activated macrophages. Compared to mupirocin, XJS01 exhibited an excellent therapeutic effect on mice skin wounds, confirming it to be a potential alternative to antibiotics.


Assuntos
Bacteriocinas/farmacologia , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Bacteriocinas/química , Citocinas/metabolismo , Modelos Animais de Doenças , Hemólise , Humanos , Concentração de Íons de Hidrogênio , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Testes de Sensibilidade Microbiana , Cicatrização
15.
Zhongguo Zhong Yao Za Zhi ; 46(16): 4222-4229, 2021 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34467736

RESUMO

Bupleuri Radix, serving as the sovereign medicinal in many antidepressant compound preparations, has been proved effective in treating depression in mice, but its effect on the intestinal flora remains unclear. The present study aimed to investigate the effects of Bupleurum chinense(one of the original materials of Bupleuri Radix) on the behaviors and the diversity of intestinal flora of depressed mice. A depression mouse model was induced by repeated social defeat stress. Specifically, C57 BL/6 J male mice were exposed to the attack from the CD-1 mice. Then, C57 BL/6 J male mice were divided into a depression group and a B. chinense group, with normal saline and B. chinense administered(ig) respectively. Sucrose preference test and tail suspension test were conducted during and after the experiment respectively, to analyze the effects of B. chinense on the behaviors of the depressed mice. The feces were collected after the experiment. The V3-V4 16 S rDNA regions of intestinal flora of mice in each group were sequenced by Ion S5 TMXL for the analysis of the number of operational taxonomic units(OTUs), richness, alpha and beta diversity indexes, and differential phyla and genera. The results indicated that B. chinense could decrease depressive-like behaviors of mice, increase sucrose preference, and shorten the time of immobility in tail suspension test. After B. chinense intervention, the relative abundance of Firmicutes was significantly decreased, while that of Bacteroidetes was increased at the phylum level. At the genus level, the relative abundance of Lactobacillus and Lachnoclostridium decreased(P<0.05), while that of Bacteroides, Alistopes, etc. was elevated(P<0.05). The findings demonstrate that B. chinense can regulate the intestinal flora and improve the depressive-like behaviors of mice with depression.


Assuntos
Bupleurum , Microbioma Gastrointestinal , Animais , Fezes , Lactobacillus , Camundongos , Camundongos Endogâmicos C57BL
16.
Front Microbiol ; 12: 617710, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897634

RESUMO

The egg-pathogenic fungus Purpureocillium lilacinum parasitizes on nematode eggs, and thus, it is used as a good biocontrol agent against plant root-knot nematodes. However, little is known about the transcriptional response of P. lilacinum while infecting nematode eggs. This study presents the whole transcriptome sequencing of P. lilacinum and transcriptome-wide gene expression analysis of P. lilacinum upon infecting the eggs of Meloidogyne incognita compared to non-infecting controls. A transcriptomic library of P. lilacinum was used as reference gene set and six transcriptomic libraries of the non-infecting control and P. lilacinum infecting M. incognita eggs were constructed, respectively, comprising three biological replicates of each. A total of 1,011 differently expressed genes (DEGs) were identified in the infecting samples, including 553 up-regulated and 458 down-regulated genes compared to the non-infecting control samples. Furthermore, functional enrichment analysis exhibited that these DEGs were primarily involved in oxidative phosphorylation, oxidoreductase activity, and metabolic processes. Fifteen DEGs were randomly selected to verify the RNA sequencing results through quantitative real-time polymerase chain reaction (qPCR). The study focused on P. lilacinum genes that were strongly expressed upon infecting M. incognita eggs. These DEGs were primarily involved in detoxification, parasitic behavior, and nutritional utilization. This study contributes significantly to the understanding of the molecular mechanisms underlying the parasitic action of P. lilacinum on nematode eggs and provides a valuable genetic resource for further research on parasitic behavior of P. lilacinum. Notably, this study examined the transcriptomics of P. lilacinum infecting M. incognita eggs at only one time point. Since there were fungi at different stages of the infection process at that time point, the transcriptional profiles are not precisely examining one specific stage in this process.

17.
Front Microbiol ; 12: 779315, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069481

RESUMO

Few bacteriocins with antibacterial activity against Shigella flexneri have been reported. Here, a novel bacteriocin (LFX01) produced by Lactiplantibacillus plantarum strain LF-8 from the intestine of tilapia was purified and extensively characterized. LFX01 possesses a molecular weight of 1049.56 Da and an amino acid sequence of I-T-G-G-P-A-V-V-H-Q-A. LFX01 significantly inhibited S. flexneri strain 14 (S. flexneri_14) growth. Moreover, it exhibited excellent stability under heat and acid-base stress, and presented sensitivity to a variety of proteases, such as proteinase K, pepsin, and trypsin. The minimum inhibitory concentration (MIC) of LFX01 against S. flexneri_14 was 12.65 µg/mL, which was smaller than that of most of the previously found bacteriocins. Furthermore, LFX01 significantly inhibited (p < 0.05) S. flexneri_14 cells and decreased their cell viability. In addition, LFX01 could significantly (p < 0.05) inhibit biofilm formation of S. flexneri_14. Scanning electron microscopy analysis presented that the cell membrane permeability of S. flexneri_14 was demolished by LFX01, leading to cytoplasmic contents leakage and cell rupture death. In summary, a novel bacteriocin of lactic acid bacteria (LAB) was found, which could effectively control S. flexneri in both planktonic and biofilm states.

18.
J Hazard Mater ; 401: 123409, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32763701

RESUMO

Larval aquatic fireflies in fresh water are adversely affected by water pollutants such as benzo(a)pyrene (BaP). However, their response to BaP stress at the microRNA (miRNA)-regulatory level remains unknown. Here, transcriptomes containing 31,872 genes and six miRNA transcriptional profiles were obtained for Aquatica wuhana larvae, and comparative analysis was performed between larvae exposed to BaP (0.01 mg/L) and unexposed controls. Fifteen of 114 miRNAs identified via bioinformatics were detected as differentially expressed (DEMs) upon BaP exposure. Analysis results of predicted target genes of DEM suggests that BaP exposure primarily triggered transcriptional changes of miRNA associated with five major regulatory categories: 1) osmotic balance, 2) energy metabolic efficiency, 3) development, 4) xenobiotic metabolism (oxidative stress), and 5) innate immune response. Based on six innate immune- and xenobiotic metabolism-related pathways enriched by the predicted DEM targets, 11 key BaP-responsive DEMs were further screened to investigate dynamic changes of expression in response to BaP stress at five time points, and also to validate the miRNA sequencing data using quantitative real-time PCR. This study provides valuable information for the protection of firefly resources and supplements the understanding of miRNA regulatory mechanisms in response to water deterioration.


Assuntos
Besouros , MicroRNAs , Poluentes Químicos da Água , Animais , Benzo(a)pireno/toxicidade , Besouros/genética , Vaga-Lumes , MicroRNAs/genética , Transcriptoma , Poluentes Químicos da Água/toxicidade
19.
Front Physiol ; 11: 555233, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123022

RESUMO

Aquatic fireflies are important indicators of the quality of freshwater environments and key models for research on insect adaptation to freshwater environments. For these investigations, gene expression analyses using quantitative real-time PCR are heavily dependent on reliable reference genes. In this study, based on a transcriptome assembly and annotation for the aquatic firefly Aquatica leii at the adult and larval stages, 10 candidate reference genes (α-tubulin, ß-tubulin, ß-actin, EF1A, SDHA, UBQ, GST, GAPDH, RPS31, and RPL13A) were identified for analyses of expression stability. Quantitative real-time PCR analyses for each candidate reference genes in A. leii was conducted for four developmental stages, four adult tissue types, two adult sexes, and two ecological stressors [adults exposed to five temperatures and larvae exposed to four concentrations of benzo(a)pyrene]. Results were evaluated by three independent algorithms (geNorm, NormFinder, and BestKeeper) and one comparative algorithm (RefFinder). The expression stability of candidate reference genes in A. leii differed under various conditions. Reference genes with the most stable expressions levels in different tissues, temperatures, sexes, developmental stages, and concentrations of benzo(a)pyrene were α-tubulin, GST, ß-actin, ß-tubulin, and α-tubulin, respectively. Furthermore, the optimal normalization factors (NFs) for the quantification of the expression levels of target genes by quantitative real-time PCR analyses of A. leii were identified for each experimental group. In particular, NF = 2 for different tissues (α-tubulin + ß-tubulin), different sexes (ß-actin + EF1A), and larvae exposed to different concentrations of benzo(a)pyrene (α-tubulin + EF1A); NF = 3 for developmental stages (GST + GAPDH + SDHA) and adults exposed to different temperatures (ß-tubulin + EFA + GST). In addition, we surveyed the expression profiles of two target genes (CYP3A and CSP8) in larvae exposed to different concentrations of benzo(a)pyrene and in different adult tissues. The results further validated the reliability of the reference genes. The optimal reference genes for various experimental conditions identified in these analyses provide a useful tool for ecological studies of aquatic fireflies.

20.
Virol J ; 17(1): 130, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843096

RESUMO

BACKGROUND: New strategies are urgently needed to deal with the growing problem of multidrug-resistant bacterial pathogens. As the natural viruses against bacteria, recently, bacteriophages have received particular attention. Here, we identified and characterized a novel peptidoglycan hydrolase named MMPphg by decoding the complete genome sequence of Meiothermus bacteriophage MMP17, which was isolated in Tengchong hot spring in China and contains a circular genome of 33,172 bp in size and a GC content of 63.4%. FINDINGS: We cloned the MMPphg gene, overproduced and purified the phage lytic protein, which contains a highly conserved M23 metallopeptidase domain and can be activated by Mg2+ and Zn2+. MMPphg is capable of withstanding temperatures up to 70 °C, and preserved more than 80% of its activity after a 30 min treatment between 35 and 65 °C. More interestingly, by disrupting bacterial cells, MMPphg exhibits surprising antimicrobial activity against both Gram-negative and Gram-positive pathogenic bacteria, especially antibiotic-resistant strains such as Escherichia coli O157, Staphylococcus aureus and Klebsiella pneumonia. CONCLUSIONS: In the current age of mounting antibiotic resistance, these results suggest the great potential of MMPphg, the gene product of bacteriophage MMP17, in combating bacterial infections and shed light on bacteriophage-based strategies to develop alternatives to conventional antibiotics for human or veterinary applications.


Assuntos
Anti-Infecciosos/farmacologia , Bacteriófagos/enzimologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , N-Acetil-Muramil-L-Alanina Amidase/farmacologia , Bacteriófagos/genética , China , DNA Viral/genética , Farmacorresistência Bacteriana , Estabilidade Enzimática , Temperatura Alta , Metaloproteases/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/isolamento & purificação , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...